What controls the explosivity of subglacial rhyolite in Iceland?
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Subglacial rhyolitic edifices have a wide spectrum of sizes,
morphologies and lithofacies (Figs 1-3), reflecting various
eruptive styles and degrees of explosivity*. However, a
subglacial rhyolitic eruption has never been observed and
so the controlling factors on eruptive behaviour are poorly
understood?.
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Modelled open and closed system degassing paths** have been o
compared with H20-Cl relationships but no significant A1
distinction was found (Fig. 6). However, effusive samples
require a much higher (>50) Cl distribution coefficient (D) than

lon-probe data indicates that explosively produced samples have
a higher pre-eruptive water content (Fig 5c, 5d) than effusively
produced samples (Fig. 5a, 5b). These values (up to 5.1 wt%) are
significantly higher than the expected values for Icelandic rhyolite,

During subaerial eruptions, volatiles are thought to be a
key factor in determining eruptive style with (1) a high pre-
eruptive H20 and CO2 content and (2) closed system
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Blahnukur, there is a significant difference between melt
inclusion and matrix glass data (Fig. 7) which could be attributed
to microlite growth, but for the more explosively erupted 7 - o Dalakvisl matrix glass
Dalakvisl, there has been little change in chemistry.

Lab based studies®? suggest that the presence of bubbles
may hinder phreatomagmatic explosions. This would imply
that, contrary to subaerial eruptions, subglacial eruptions
favour volatile-poor magma for explosive activity.

e Blahnukur melt inclusions
Our results show that as well as being water-rich, explosive

samples are also Cl-poor. Whereas the opposite is true for effusive

| et R, L.~ We applied formulas®* to model open and closed : ' : Thus it seems that during subglacial rhyolitic eruptions, volatiles play a similar role B. Zimanowski et al. (1991) J Volcanol Geotherm Res 48, 341-358
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samples (Fig. 6). This could reflect differences in degassing paths. o Dalakvisl melt inclusions
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Torfajokull central volcano in South Iceland (Fig.
4). We sampled from three edifices: Blahnukur : - _
(Fig. 1), Dalakvisl (Fig. 2) and SE Raudfossafjoll SE Raudfossafjoll
(Fig. 3) that erupted with effusive#, mixed? and 4 -
explosive® behaviour respectively. They all have >
similar major element chemistry and erupted § 37
under similar thicknesses of ice 9%°, See poster S,
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Fissures/faults Fe-Ti: Fe-Ti oxides, MG: matrix glass which is microlite-rich in Fig. 8 (a) and microlite-poor in Fig. 8 (b).
rm———" Volatile concentrations were measured using the lon 5‘4
Microprobe Facility at the University of Edinburgh. <3 Conclusion
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Dalakvisl, (c) SE Raudfossafjoll and (d) explosive parts of Dalakvisl.

This story will be coming soon to a journal near you...



